

STEM

DESIGN & DIGITAL TECHNOLOGY

Y8

Y9

Y10

UNIT: SYSTEMS & ENERGY IN FLIGHT

KEY ASPECTS

- Design Cycle: Apply an iterative, testingbased approach.
- **Digital Skills:** Develop software proficiency.
- Technology Impact: Understand its role in daily life.
- Practical Safety: Prioritize safe working practices.
- STEM Skills: Build technical and problemsolving abilities.
- Functional Prototyping: Focus on
- practical product creation.
- Creative & Critical Thinking: Blend innovation with analysis.

• Material Properties: Understand

characteristics and applications

POTENTIAL DESIGN PROBLEMS & SOLUTIONS

- Prototype ideas for sustainable air / water transportation solutions
- How to we create a more inclusive city through Software design and hardware control
- TECHNOLOGIES CONTEXT

Engineering Principles and Systems

DIGITAL TECHNOLOGIES CONTEXT Digital Systems, Digital Implementation

SPECIFIC SKILLS & CONTENT FOCUS

- Digital Systems: Explore wired and wireless networks.
- Research Skills: Use primary and secondary sources. • **Design Brief:** Understand and interpret requirements.
- Iterative Design: Apply a continuous improvement cycle.
- Electrical Control: Manage system outputs with energy. Project Management: Set goals and track progress.
- Collaboration: Work effectively in teams. · Idea Presentation: Test and critically analyze concepts. • Effective Solutions: Develop functional, well-executed
- designs. • Innovation: Create and present new ideas.

UNIT: CONVENTIONS AND SUSTAINABLITY IN HOUSING

KEY ASPECTS

- Technology & Society: Impact on
- products, services, and environment.
- Engineering Systems: Input
- controlling output. Integrated Systems: Interaction of hardware and software.

POTENTIAL DESIGN PROBLEMS & SOLUTIONS

- Renewable / sustainable transportation prototype design
- Technology assisted living in everyday homes

TECHNOLOGIES CONTEXT • Engineering Principles and Systems

DIGITAL TECHNOLOGIES CONTEXT Digital Systems, Digital Implementation

SPECIFIC SKILLS & CONTENT FOCUS

- **Digital Systems:** Explore wired & wireless
- technologies. • Problem Definition: Develop a statement based on
- a brief. · Research & Analysis: Investigate purpose and key

considerations.

UNIT: HARWARE & SOFTWARE SYSTEMS CONTROL IN GAMES

KEY ASPECTS

- Hardware: Understand digital
- system components. Electromagnetic Control: Manage
- mechanical systems electrically. Computational Thinking: Apply input-
- process-output algorithms.
- Digital Media: Develop and manipulate images.
- Data Analysis: Collect and interpret information.
- Software Control: Manage display outputs.
- Mechanisms & Motion: Explore
- movement principles. **Electrical & Mechanical Theory:**

Understand core concepts.

• Ethical / Inclusive arcade-themed game

design • Designing prototype remote-controlled

POTENTIAL DESIGN PROBLEMS & SOLUTIONS

vehicles to complete specific scoring / retrieval tasks

TECHNOLOGIES CONTEXT Engineering Principles and Systems

DIGITAL TECHNOLOGIES CONTEXT

• Digital Systems; Data: Representation, Acquiring, Managing and Analysis; Digital Implementation

SPECIFIC SKILLS & CONTENT FOCUS

- Engineering Systems: Control force, motion, and energy.
- Design Problem: Investigate needs and
- opportunities. • Project Direction: Define with a design brief.
- Solution Development: Consider constraints, tech and resources.
- · Prototyping Skills: Use CAD, 3D printing, and laser cutting.
- Testing & Review: Evaluate and refine designs. • Algorithm Development: Iterate, refine, and test
- with users

followed through refinement and user testing

TOPICS / SKILLS

- Data representation
- Using data in a software algorithm
- · Design and implement algorithms in visual
- programming environments • Analysis of technologies & resources to develop
- solutions · Development of solutions using appropriate technical
- terms and methods

• Developing ideas "creativity meets critical analysis"

PROCESSES

- Using relevant hardware and software to present an idea presentation
- Following specifications/protocols while producing a
- designed/quality-controlled solution
- Manage design and creation processes while considering time and resources
- Use a range of technologies, components, and equipment to produce designed solutions
- Testing, data recording, and evaluating

UNIT: ITERATIVE PROBLEM-SOLVING IN EMERGENCY RESPONSE SCENARIOS

KEY ASPECTS

- Materials & Components: Integrate properties into design. • Motion & Energy: Assess impact on
- engineered solutions.
- Social & Ethical Impact: Design solutions for community needs.
- Testing & Improvement: Use iterative techniques for refinement. Evaluative Thinking: Collaborate to

develop success criteria.

POTENTIAL DESIGN PROBLEMS & SOLUTIONS

- Remote medical supply transport device.
- Unmanned emergency services vehicle. • Natural Disaster reconnaissance device
- **TECHNOLOGIES CONTEXT** • Engineering Principles and Systems, Materials &

• Technologies specialisation

DIGITAL TECHNOLOGIES CONTEXT

Digital Systems; Data: Representation, Acquiring,

Managing and Analysis; Digital Implementation

SPECIFIC SKILLS & CONTENT FOCUS

- Ethical & Sustainable Design: Consider social and environmental impact.
- Community Needs: Balance consumer/producer
- values and resources.
- Materials & Tools: Understand properties and
- production equipment. • User Research: Identify needs through interviews
- and surveys. • Design Brief: Develop based on user insights.

• Technology & Constraints: Explore solutions within

- limitations. · Alternative Solutions: Focus on usability, aesthetics,
- and feasibility. • Production & Testing: Implement and refine using
- various techniques. • Project Management: Consider time, risk, and
- sustainability. • Evaluation: Assess design and process against

ethical criteria.

UNIT: RENEWABLE ENERGY IN TRANSPORTATION

KEY ASPECTS

- Engineering Principles: Apply
- conventions in project-based experiences.
- Materials & Components: Integrate properties into design. • Motion & Energy: Optimize
- Environmental Impact: Address community needs sustainably. • Iterative Testing: Refine solutions
- through evaluation. Collaborative Evaluation: Develop

success criteria through teamwork.

performance in engineered solutions.

POTENTIAL DESIGN PROBLEMS & SOLUTIONS Transportation with Renewable Energy

TECHNOLOGIES CONTEXT

• Engineering Principles and Systems, Materials & • Technologies specialisation

• Digital Systems; Data: Representation, Acquiring,

Managing and Analysis; Digital Implementation

DIGITAL TECHNOLOGIES CONTEXT

SPECIFIC SKILLS & CONTENT FOCUS

- Ethical & Sustainable Design: Improve systems with
- responsible practices. Environmental Innovation: Encourage sustainability
- and entrepreneurship. Material Impact: Assess usability, safety, and
- functionality. Problem-Solving: Identify, define, and justify design
- Design Brief: Develop a structured solution plan. Technology & Constraints: Research and explore viable ideas.
- Alternative Solutions: Balance function, accessibility, and aesthetics.
- Production & Testing: Implement, justify, and refine designs. Project Management: Use agile, collaborative

Iterative Improvement: Test, refine, and enhance

AEEST ENGINEERING

(MECHATRONICS)

approaches.

designs.

YEAR ATAR 11 & 12

- · Students are introduced to design through techniques like sketching, drawing, photography, and prototyping to communicate ideas and apply **Design Thinking**.
- · They learn key design terminology and how representation conveys meaning. Using the **Double Diamond process**, they develop products, devices, or services for end-users, prototyping and refining designs to test their effectiveness.
- The focus is on defining the function, form, and features to ensure the designs meet the needs of the brief.
- Properties
- Fundamental Engineering Calculations Dimensional Calculations • Perimeter & Surface Area
- Volume Density & Efficiency
- Mechanical Advantage & Velocity Ratio Types of Motion
- Energy, Work, and Power Energy Equations
- Components
- Electrical Laws
- Diagrams
- Obsolescence • **Mechatronics** (Electrical & Electronics)
- Microcontroller Interfacing Control Systems Systems and Control
- - Density
 - Fundamental Engineering Calculations
 - Mechanisms and Motion Mechanical Advantage

Other Calculations

- Energy and Work Power
- Impact on Society Mechatronics and Microcontroller Interfacing
- Materials: Types and Classification Materials Classification
- Properties • Fundamental Engineering Calculations
- Dimensional Calculations
- Density & Efficiency Mechanisms
- Types of Motion • Energy, Work, and Power
- Energy Conservation Types Obsolescence

• **Mechatronics** (Electrical & Electronics)

- Components Electrical Laws
- Control Systems Systems and Control
- Flow Charts

YEAR 11 [UNIT 1 & 2]

- Materials: Types and Classification
- Mechanisms
- Energy Conservation
- Electrical and Electronics Transistor Operations
- Flow Charts Data Extraction

YEAR 12 [UNITS 3 & 4]

- · Students learn to create designs that benefit society, focusing on sustainability, ethics, and social impact.
- Using the **Double Diamond process**, they develop solutions addressing environmental, social, and cultural needs while ensuring safety. Students design products and layouts to communicate messages and influence attitudes, analysing demographics to create persuasive designs for real-world
- issues. • Through iterative design and **Design Thinking** strategies, they refine their ideas to ensure effective communication of values and promote positive change.
- Materials Properties Key Properties
- Efficiency
- Speed and Torque • Energy, Work, and Power
- Life Cycle Analysis Life Cycle Stages
- Flow Charts Flowchart Symbols Drawing Flowcharts

Microcontroller Basics

PWM Control

- Perimeter & Surface Area Volume
- Mechanical Advantage & Velocity Ratio
- Energy Equations
- Microcontroller Interfacing
- Data Extraction
- Diagrams
 - Electrical and Electronics Transistor Operations